Kamis, 06 Oktober 2011


Bilangan



Dalam bidang Matematika, bilangan dapat diklasifikasikan atau digolongkan ke dalam beberapa jenis atau kelompok: bilangan kompleks numbers, bilangan imajiner, bilangan riil, bilangan rasional, bilangan irasional, bilangan bulat, bilangan asli, dan bilangan cacah.
Bilangan Asli dan Bilangan Cacah ()
Ada dua definisi bilangan asli:
  • elemen dari himpunan { 1, 2, 3, 4, ... }
  • elemen dari himpunan { 0, 1, 2, 3, 4, ... }
Definisi yang pertama tidak memasukkan 0 (nol), sedangkan definisi yang kedua memasukkan 0 (nol). Definisi yang kedua (yang memasukkan 0) dapat juga disebut bilangan cacah. Sayangnya, tidak ada kesepakatan yang disetujui oleh semua ahli matematika sampai sekarang. Untuk lebih jelas gunakanlah istilah bilangan bulat positif (tidak termasuk 0) dan bilangan bulat yang tidak negatif (termasuk 0). Contoh: 1, 2, 4, 7, dst.
Bilangan bulat ()
Bilangan yang dapat ditulis tanpa menggunakan pecahan atau dalam bentuk desimal. Bilangan bulat terdiri atas bilangan asli, negatifnya, dan bilangan nol.  = { ..., -2, -1, 0, 1, 2, ... }. Bilangan bulat dilambangkan dengan simbol  yang berasal dari bahasa Jerman: Zahlen (yang berarti "bilangan"). Contoh: -12, -3, 0, 4, 5, dst.
Bilangan Rasional ()
Bilangan yang dapat dinyatakan sebagai pecahan. Dilambangkan dengan simbol  dari kata bahasa Inggris quotient yang berarti "hasil bagi". Contoh: -23, -3,5, 0, 2, 2¾, 4.7, dst.
Bilangan Irasional
Bilangan yang tidak dapat dinyatakan sebagai pecahan. Contoh: √2, √3, π, e, dst.
Bilangan Riil ()
Bilangan yang memiliki korespondensi satu-satu dengan titik-titik yang terletak pada garis bilangan tak terbatas. Himpunan bilangan riil terdiri atas bilangan rasional dan bilangan irasional. Dengan kata lain, bilangan riil adalah bilangan yang dapat dituliskan dalam bentuk desimal. Contoh: √2, -3,4, 1, dst.
Bilangan Imajiner
Bilangan yang kuadratnya adalah bilangan riil negatif. Bilangan imajiner dituliskan dengan simbol i, dimana i = √-1. Contoh : 2i, -4i, 5i, dst.
Bilangan Kompleks ()
Bilangan yang berbentuk a + bi, dimana a dan b adalah bilangan riil dan i adalah unit imajiner (i = √-1). Contoh: 2 + 3i.

Bilangan prima adalah bilangan bulat positive yang hanya mempunyai dua faktor, yaitu 1 dan bilangan itu sendiri. Misalnya, 7 adalah bilangan prima karena faktor-faktor dari 7 adalah 1 dan 7.

Trivia

Bilangan prima terbesar yang diketahui sampai saat ini adalah243,112,609 − 1.
Bilangan prima ini ditemukan pada tanggal 23 Agustus 2008 dan mempunyai 12,978,189 angka.
Bilangan-bilangan prima yang pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, dan seterusnya. Perhatikan bahwa 1 bukan merupakan bilangan prima karena ia hanya mempunyai satu faktor.
Anda dapat mengecek apakah sebuah bilangan merupakan bilangan prima dengan memasukkan bilangan tersebut di bawah ini. Jika satu-satunya faktor prima dari bilangan tersebut adalah bilangan itu sendiri, maka ia adalah bilangan prima.
Faktor prima adalah faktor-faktor dari bilangan bulat yang merupakan bilangan prima. Faktor prima dapat digunakan untuk mencari dua atau lebih bilangan bulat

Bagaimana mencari faktor persekutuan terbesar (FPB)

Ada beberapa cara / metode untuk menemukan faktor persekutuan terbesar. Di bawah ini adalah beberapa di antara

Sebagai contoh, marilah kita cari FPB dari 24 dan 60.

Mencari faktor prima
Untuk menggunakan metode ini, pertama-tama, carilah dulu faktor-faktor prima dari masing-masing bilangan. Cek halaman tentang faktor prima untuk belajar mencari faktor prima dari sebuah bilangan bulat.
24 = 2 × 2 × 2 × 3
60 = 2 × 2 × 3 × 5
Lalu, kita cari faktor prima persekutuan dari kedua bilangan tersebut.
24 = 2 × 2 × 2 × 3
60 = 2 × 2 × 3 × 5
Faktor prima persekutuannya adalah 2, 2, dan 3. Faktor persekutuan terbesar (FPB) dari 24 dan 60 adalah hasil perkalian dari faktor prima persekutuan, yaitu 2 × 2 × 3 = 12.

Pembagian dengan bilangan prima
Pertama-tama, bagilah kedua bilangan dengan bilangan prima terkecil yang dapat membagi keduanya. Bilangan prima terkecil yang dapat membagi 24 dan 60 adalah 2.
224 60
12 30
Lanjutkan dengan langkah-langkah yang sama sampai tidak ada lagi bilangan prima yang dapat membagi bilangan yang ada di sebelah kanan.
224 60
212 30
36  15
2  5
FPBnya adalah 2 × 2 × 3 = 12.

Algoritma Euclid
Algoritma ini mencari FPB dengan cara melakukan pembagian berulang-ulang dimulai dari kedua bilangan yang hendak kita cari FPBnya sampai kita mendapatkan sisa 0 dari hasil pembagian.
Misalnya untuk contoh kita di atas, 24 dan 60, langkah-langkah yang diambil untuk mencari FPB dengan Algoritma Euclid adalah sebagai berikut.
  • Bagilah bilangan yang lebih besar dengan bilangan yang lebih kecil. Dalam contoh ini, kita bagi 60 dengan 24 dan hasilnya adalah 2 dengan sisa 12.
  • Lalu kita bagi bilangan yang lebih kecil (yaitu 24) dengan sisa dari pembagian sebelumnya (yaitu 12). Jadi 24 dibagi 12, kita dapatkan hasilnya 2 dan sisanya 0.
  • Karena kita sudah mendapat sisa 0, bilangan terakhir yang kita gunakan untuk membagi adalah FPBnya, yaitu 12.
Marilah kita lihat contoh yang lain, cari FPB dari 40 dan 64.
  • 64 ÷ 40 = 1 dengan sisa 24
  • 40 ÷ 24 = 1 dengan sisa 16
  • 24 ÷ 16 = 1 dengan sisa 8
  • 16 ÷ 8 = 2 dengan sisa 0.
    Kita berhenti di sini sebab kita sudah mendapat sisa 0. Bilangan terakhir yang kita gunakan untuk membagi adalah 8, jadi FPB dari 40 dan 64 adalah 8

Bagaimana mencari Kelipatan Persekutuan Terkecil

Beberapa cara / metode untuk mencari Kelipatan Persekutuan Terkecil (KPK) adalah sebagai berikut :
Mencari faktor prima
Pembagian dengan bilangan prima
rumus
Sebagai contoh, marilah kita cari FPB dari 24 dan 60.

Mencari faktor prima
Untuk menggunakan metode ini, pertama-tama carilah dulu faktor-faktor prima dari masing-masing bilangan dan tulislah dengan notasi indeks. Cek halaman tentang faktor prima untuk belajar mencari faktor prima dari sebuah bilangan bulat.
24 = 23 × 3
60 = 22 × 3 × 5
Kelipatan persekutuan terkecil (KPK) dari kedua bilangan di atas adalah hasil perkalian setiap faktor prima yang memiliki pangkat terbesar. Jadi untuk contoh di atas, KPKnya adalah 23 × 3 × 5 = 120.

Pembagian dengan bilangan prima
Pertama-tama, bagilah kedua bilangan dengan bilangan prima terkecil yang dapat membagi keduanya. Bilangan prima terkecil yang dapat membagi 24 dan 60 adalah 2.
224 60
12 30
Lanjutkan dengan langkah-langkah yang sama sampai kita mempunya semua bilangan prima di sebelah kiri dan di bagian bawah.
224 60
212 30
36  15
2  5
KPKnya adalah 2 × 2 × 3 × 2 × 5 = 120.

Rumus
Jika kita tahu FPB dari bilangan bulat a dan b, kita dapat menghitung KPKnya dengan menggunakan rumus berikut ini.
KPK(a,b) =a × b
FPB(a,b)

Masih dengan contoh yang sama seperti di atas, kita dapat mencari KPK dari 24 dan 60 sebagai berikut.
KPK(24,60) =24 × 60= 120
12
Tentu saja kita juga dapat menggunakan rumus ini untuk mencari FPB dari dua bilangan bulat jika kita sudah tahu KPKnya.

Senin, 26 September 2011

1 Faktorisasi Aljabar




Faktorisasi Aljabar


Masih ingatkah kamu tentang pelajaran Aljabar? Di Kelas VII, kamu telah mengenal bentuk aljabar dan juga telah mempelajari operasi hitung pada bentuk aljabar tersebut. Sekarang, kamu akan menambah pengetahuanmu tentang aljabar tersebut, khususnya mengenai faktorisasi aljabar. Menurutmu, mengapa kamu perlu mempelajari aljabar? Mungkin kamu tidak menyadari bahwa konsep aljabar seringkali dipakai dalam kehidupan sehari-hari.
Setiap hari, Nita menabung sebesar x rupiah. Berapa besar tabungan anak tersebut setelah satu minggu? Berapa besar pula tabungannya setelah satu bulan? Setelah 10 hari, uang tabungan itu dibelikan dua buah buku yang harganya y rupiah, berapakah sisa uang tabungan Nita? Jika nilai x adalah Rp2.000,00 dan nilai y adalah Rp5.000,00, carilah penyelesaiannya.
Saat kamu mencari penyelesaian dari kasus tersebut, maka kamu sedang menggunakan konsep aljabar. Oleh karena itu, pelajarilah bab ini dengan baik

A. Operasi Hitung Bentuk Aljabar

Di Kelas VII, kamu telah mempelajari pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut.
1. 2pq                4. x2 + 3x –2
2. 5x + 4            5. 9x2 – 3xy + 8
3. 2x + 3y –5
Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut.
  1. Suku yang memuat variabel x, koefisiennya adalah 5.
  2. Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah.
Sekarang, pada bentuk aljabar nomor (3), (4), dan (5), coba kamu tentukan manakah yang merupakan koefisien, variabel, konstanta, dan suku?

1. Penjumlahan dan Pengurangan Bentuk Aljabar

Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya, sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil, berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk aljabar, sebagai berikut.
a. Sifat Komutatif
     a + b = b + a, dengan a dan b bilangan riil
b. Sifat Asosiatif
    (a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil
c. Sifat Distributif
    a (b + c) = ab + ac, dengan a, b, dan c bilangan riil

Agar kamu lebih memahami sifat-sifat yang berlaku pada bentuk aljabar, perhatikan contoh-contoh soal berikut.
Contoh Soal :
Sederhanakan bentuk-bentuk aljabar berikut.
a. 6mn + 3mn
b. 16x + 3 + 3x + 4
c. –x – y + x – 3
d. 2p – 3p2 + 2q – 5q2 + 3p
e. 6m + 3(m2 – n2) – 2m2 + 3n2
Jawab:
a. 6mn + 3mn = 9mn
b. 16x + 3 + 3x + 4 = 16x + 3x + 3 + 4
     = 19x + 7
c. –x – y + x – 3 = –x + x – y – 3
     = –y – 3
d. 2p – 3p+ 2q – 5q2 + 3p = 2p + 3p – 3p2 + 2q – 5q2
     = 5p – 3p2 + 2q – 5q2
     = –3p2 + 5p – 5q2 + 2q
e. 6m + 3(m2 – n2) – 2m2 + 3n2 = 6m + 3m2 – 3n2 – 2m2 + 3n2
    = 6m + 3m2 – 2m2 – 3n2 + 3n2
    = m+ 6m
Contoh Soal :
Tentukan hasil dari:
a. penjumlahan 10x2 + 6xy – 12 dan –4x2 – 2xy + 10,
b. pengurangan 8p2 + 10p + 15 dari 4p2 – 10p – 5.
Jawab:
a. 10x2 + 6xy – 12 + (–4x2 – 2xy + 10) = 10x2 – 4x2 + 6xy – 2xy – 12 + 10
     = 6x2 + 4xy – 2
b. (4p2 – 10p – 5) – (8p2 + 10p + 15) = 4p2 – 8p2 – 10p –10p – 5 – 15
     = –4p2 – 20p – 20

2. Perkalian Bentuk Aljabar

Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. Perkalian Suku Satu dengan Suku Dua
Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Gunakan hukum distributif untuk menyelesaikan perkalian berikut.
  a. 2(x + 3)              c. 3x(y + 5)
  b. –5(9 – y)             d. –9p(5p – 2q)
Jawab:
a. 2(x + 3) = 2x + 6                c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y           d. –9p(5p – 2q) = –45p2 + 18pq
b. Perkalian Suku Dua dengan Suku Dua
Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan.
 a. (x + 5)(x + 3)               c. (2x + 4)(3x + 1)
 b. (x – 4)(x + 1)                d. (–3x + 2)(x – 5)
Jawab:
a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
                           = x2 + 5x + 3x + 15
                           = x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
                          = x2 – 4x + x – 4
                          = x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
                               = 6x2 + 12x + 2x + 4
                               = 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
                              = –3x2 + 2x + 15x – 10
                              = –3x2 + 17x – 10
Contoh Soal :
Diketahui sebuah persegipanjang memiliki panjang (5x + 3) cm dan lebar
(6x– 2) cm. Tentukan luas persegipanjang tersebut.
Jawab:
Diketahui : p = (5x + 3) cm dan l = (6x – 2) cm
Ditanyakan : luas persegipanjang
Luas = p × l
         = (5x + 3)(6x – 2)
         = (5x + 3)6x + (5x + 3)(–2)
         = 30x2 + 18x – 10x – 6
         = 30x2 + 8x – 6
Jadi, luas persegipanjang tersebut adalah (30x2 + 8x – 6) cm2
Amati kembali Contoh Soal. Ternyata perkalian dua suku bentuk aljabar (a + b) dan (c + d) dapat ditulis sebagai berikut.
             (a + b)(c + d) = (a + b)c + (a + b)d
                                    = ac + bc + ad + bd
                                    = ac + ad + bc + bd
Secara skema, perkalian ditulis:

Cara seperti ini merupakan cara lain yang dapat digunakan untuk menyelesaikan perkalian antara dua buah suku bentuk aljabar. Pelajari contoh soal berikut.
Contoh Soal :
Selesaikan perkalian-perkalian berikut dengan menggunakan cara skema.
 a. (x + 1)(x + 2)                c. (x – 2)(x + 5)
 b. (x + 8)(2x + 4)              d. (3x + 4)(x – 8)
Jawab:
a. (x + 1)(x + 2) = x2 + 2x + x + 2
                          = x+ 3x + 2
b. (x + 8)(2x + 4) = 2x2 + 4x + 16x + 32
                             = 2x2 + 20x + 32
c. (x – 2)(x + 5) = x2 + 5x –2x –10
                         = x2 + 3x – 10
d. (3x + 4)(x –8) = 3x2 – 24x + 4x – 32
                           = 3x2 – 20x – 32

3. Pembagian Bentuk Aljabar

Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut.
Contoh Soal :
Tentukan hasil pembagian berikut.
  a. 8x : 4                    c. 16a2b : 2ab
  b. 15pq : 3p              d. (8x2 + 2x) : (2y2 – 2y)
Jawab:
Image:jawab aljabar 1.jpg

4. Perpangkatan Bentuk Aljabar

Di Kelas VII, kamu telah mempelajari definisi bilangan berpangkat. Pada bagian ini materi tersebut akan dikembangkan, yaitu memangkatkan bentuk aljabar. Seperti yang telah kamu ketahui, bilangan berpangkat didefinisikan sebagai berikut.

Untuk a bilangan riil dan n bilangan asli.
Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. a5 = a × a × a × a × a
b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3
c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p)
               = ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4
d. (4x2y)= (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2
Sekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2 dapat ditulis:
(a + b)2 = (a + b) (a + b)
= (a + b)a + (a + b)b
= a2 + ab + ab + b2
= a2 + 2ab + b2
Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai:
(a – b)2 = (a – b) (a – b)
= (a – b)a + (a – b)(–b)
= a2 – ab – ab + b2
= a2 – 2ab + b2
Contoh Soal :
Image:jawab aljabar 2.jpg
Selanjutnya, akan diuraikan bentuk (a + b)3, sebagai berikut.
(a + b)3 = (a + b) (a + b)2
             = (a + b) (a2 + 2ab + b2)                                  (a+b)2 = a2 + 2ab + b2
             = a(a2 + 2ab + b2 ) + b (a2 + 2ab + b2 )         (menggunakan cara skema)
             = a3 + 2a2b + ab2 + a2b + 2ab2 + b3              (suku yang sejenis dikelompokkan)
             = a3 + 2a2b + a2b + ab2 +2ab+ b3               (operasikan suku-suku yang sejenis)        
             = a3 + 3a2b + 3ab2 + b3
Untuk menguraikan bentuk aljabar (a + b)2, (a + b)3, dan (a + b)4, kamu dapat menyelesaikannya dalam waktu singkat. Akan tetapi, bagaimana dengan bentuk aljabar (a + b)5, (a + b)6, (a + b)7, dan seterusnya? Tentu saja kamu juga dapat menguraikannya, meskipun akan memerlukan waktu yang lebih lama. Untuk memudahkan penguraian perpangkatan bentuk-bentuk aljabar tersebut, kamu bisa menggunakan pola segitiga Pascal . Sekarang, perhatikan pola segitiga Pascal berikut.

Hubungan antara segitiga Pascal dengan perpangkatan suku dua bentuk aljabar adalah sebagai berikut.

Sebelumnya, kamu telah mengetahui bahwa bentuk aljabar (a + b)2 dapat diuraikan menjadi a2 + 2ab + b2. Jika koefisien-koefisiennya dibandingkan dengan baris ketiga pola segitiga Pascal, hasilnya pasti sama, yaitu 1, 2, 1. Ini berarti, bentuk aljabar (a + b)2 mengikuti pola segitiga Pascal. Sekarang, perhatikan variabel pada bentuk a2 + 2ab + b2. Semakin ke kanan, pangkat a semakin berkurang (a2 kemudian a). Sebaliknya, semakin ke kanan pangkat b semakin bertambah (b kemudian b2). Jadi, dengan menggunakan pola segitiga Pascal dan aturan perpangkatan variabel, bentuk-bentuk perpangkatan suku dua (a + b)3, (a + b)4, (a + b)5, dan seterusnya dapat diuraikan sebagai berikut.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
dan seterusnya.
Perpangkatan bentuk aljabar (a – b)n dengan n bilangan asli juga mengikuti pola segitiga Pascal. Akan tetapi, tanda setiap koefisiennya selalu berganti dari (+) ke (–), begitu seterusnya. Pelajarilah uraian berikut.
(a – b)2 = a2 – 2ab + b2
(a – b)3 = a3 – 3a2b + 3ab2 – b3
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
(a – b)5 = a5 – 5a4b + 10a3b2 – 10a2b3 + 5ab4 – b5

B. Pemfaktoran Bentuk Aljabar


1. Pemfaktoran dengan Sifat Distributif

Di Sekolah Dasar, kamu tentu telah mempelajari cara memfaktorkan suatu bilangan. Masih ingatkah kamu mengenai materi tersebut? Pada dasarnya, memfaktorkan suatu bilangan berarti menyatakan suatu bilangan dalam bentuk perkalian faktor-faktornya. Pada bagian ini, akan dipelajari cara-cara memfaktorkan suatu bentuk aljabar dengan menggunakan sifat distributif. Dengan sifat ini, bentuk aljabar ax + ay dapat difaktorkan menjadi a(x + y), di mana a adalah faktor persekutuan dari ax dan ay. Untuk itu, pelajarilah Contoh Soal berikut.
Contoh Soal :
Faktorkan bentuk-bentuk aljabar berikut.
a. 5ab + 10b           c. –15p2q2 + 10pq
b. 2x – 8x2y            d. 1/2 a3b2 + 1/4 a2b3

Jawab:
a. 5ab + 10b
Untuk memfaktorkan 5ab + 10b, tentukan faktor persekutuan dari 5 dan
10, kemudian dari ab dan b. Faktor persekutuan dari 5 dan 10 adalah 5.
Faktor persekutuan dari ab dan b adalah b.
Jadi, 5ab + 10b difaktorkan menjadi 5b(a + 2).

b. 2x – 8x2y
Faktor persekutuan dari 2 dan –8 adalah 2. Faktor persekutuan dari x dan x2y adalah x.
Jadi, 2x – 8x2y = 2x(1 – 4xy).

c. –15p2q2 + 10pq
Faktor persekutuan dari –15 dan 10 adalah 5. Faktor persekutuan dari p2q2 dan pq adalah pq.
Jadi, –15p2q2 + 10pq = 5pq (–3pq + 2).

d. 1/2 a3b2 + 1/4 a2b3
Faktor persekutuan dari 1/2 dan 1/4 adalah 1/4.
Faktor persekutuan dari a3b2 adalah a2b3 adalah a2b2.
Jadi, 1/a3b2 + 1/4 a2b3 = 1/4 a2b2 (2a +b)

2. Selisih Dua Kuadrat

Perhatikan bentuk perkalian (a + b)(a – b). Bentuk ini dapat ditulis
  (a + b)(a – b) = a2 – ab + ab – b2
                         = a2 – b2
Jadi, bentuk a2 – b2 dapat dinyatakan dalam bentuk perkalian (a + b) (a – b).


Bentuk a2 – b2 disebut selisih dua kuadrat
Contoh Soal :
Faktorkan bentuk-bentuk berikut.
a. p2 – 4               c. 16 m2 – 9n2
b. 25x2 – y2          d. 20p2 – 5q2
Jawab:
a. p2 – 4 = (p + 2)(p – 2)
b. 25x2 – y2 = (5x + y)(5x – y)
c. 16m2 – 9n2 = (4m + 3n)(4m – 3n)
d. 20p2 – 5q2 = 5(4p2 – q2) = 5(2p + q)(2p – q)

3. Pemfaktoran Bentuk Kuadrat

a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1
Perhatikan perkalian suku dua berikut.
(x + p)(x + q) = x2 + qx + px + pq
                       = x2 + (p + q)x + pq
Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq.

Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.
Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut.
Contoh Soal :
Faktorkanlah bentuk-bentuk berikut.
   a. x2 + 5x + 6         b. x2 + 2x – 8
Jawab:
a. x+ 5x + 6 = (x + …) (x + …)
    Misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.
    Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6
    dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5.
    Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan
    Jadi, x2 + 5x + 6 = (x + 2) (x + 3)
b. x2 + 2x – 8 = (x + …) (x + …)
    Dengan cara seperti pada (a), diperoleh a = 1, b = 2, dan c = –8.
    Faktor dari 8 adalah 1, 2, 4, dan 8. Oleh karena c = –8, salah satu dari
    dua bilangan yang dicari pastilah bernilai negatif. Dengan demikian, dua
    bilangan yang memenuhi syarat adalah –2 dan 4, karena –2 × 4 = –8 dan
    –2 + 4 = 2.
    Jadi, x2 + 2x – 8 = (x + (–2)) (x + 4) = (x – 2) (x + 4)
b. Pemfaktoran Bentuk ax+ bx + c dengan a ≠ 1
Sebelumnya, kamu telah memfaktorkan bentuk ax2 + bx + c dengan a = 1. Sekarang kamu akan mempelajari cara memfaktorkan bentuk ax+ bx + c dengan a ≠ 1.
Perhatikan perkalian suku dua berikut.
(x + 3) (2x + 1) = 2x2 + x + 6x + 3
                         = 2x2 + 7x + 3
Dengan kata lain, bentuk 2x2 + 7x + 3 difaktorkan menjadi (x + 3) (2x + 1). Adapun cara memfaktorkan 2x2 + 7x + 3 adalah dengan membalikkan tahapan perkalian suku dua di atas.
2x2 + 7x + 3 = 2x2 + (x + 6 x) +3                (uraikan 7x menjadi penjumlahan dua suku yaitu pilih ( x + 6x )
                     = (2x2 + x) + (6x + 3)
                     = x(2x + 1) + 3(2x + 1)           (Faktorkan menggunakan sifat distributif)
                    = (x + 3)(2x+1)
Dari uraian tersebut dapat kamu ketahui cara memfaktorkan bentuk ax2 + bx + c dengan a ≠ 1 sebagai berikut.
  1. Uraikan bx menjadi penjumlahan dua suku yang apabila kedua suku tersebut dikalikan hasilnya sama dengan (ax2)(c).
  2. Faktorkan bentuk yang diperoleh menggunakan sifat distributif
Contoh Soal :
Faktorkan bentuk-bentuk berikut.
      a. 2x2 + 11x + 12                     b. 6x2 + 16x + 18
Jawab:
a. 2x2 + 11x + 12 = 2x2 + 3x + 8x + 12
                              = (2x2 + 3x) + (8x + 12)
                              = x(2x + 3) + 4(2x + 3)
                              = (x + 4)(2x + 3)
     Jadi, 2x2 + 11x + 12 = (x + 4)(2x + 3).
b. 6x2 + 16x + 8 = 6x2 + 4x + 12x + 8
                           = (6x2 + 4x) + (12x + 8)
                           = 2x(3x + 2) + 4(3x + 2)
                           = (2x + 4)(3x + 2)
      Jadi, 6x2 + 16x + 8 = (2x + 4)(3x +2)

C. Pecahan dalam Bentuk Aljabar


1. Penjumlahan dan Pengurangan Pecahan Bentuk Aljabar

Di Kelas VII, kamu telah mempelajari cara menjumlahkan dan mengurangkan pecahan. Pada bagian ini, materi tersebut dikembangkan sampai dengan operasi penjumlahan dan pengurangan pecahan bentuk aljabar. Cara menjumlahkan dan mengurangkan pecahan bentuk aljabar adalah sama dengan menjumlahkan dan mengurangkan pada pecahan biasa,
yaitu dengan menyamakan penyebutnya terlebih dahulu. Agar kamu lebih memahami materi ini, pelajari contoh-contoh soal berikut.
Contoh Soal :
Image:jawab aljabar 4.jpg
Contoh Soal :
Image:jawab aljabar 5.jpg
Image:jawab aljabar 6.jpg

2. Perkalian dan Pembagian Pecahan Bentuk Aljabar

a. Perkalian
Cara mengalikan pecahan bentuk aljabar sama dengan mengalikan pecahan biasa, yaitu


Agar kamu lebih memahami materi perkalian pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal :
Image:jawab aljabar 7.jpg
Image:jawab aljabar 8.jpg

b. Pembagian
Aturan pembagian pada pecahan bentuk aljabar sama dengan aturan pembagian pada pecahan biasa, yaitu :


Contoh Soal :
Image:jawab aljabar 9.jpg

3. Perpangkatan Pecahan Bentuk Aljabar

Pada bagian sebelumnya, kamu telah mengetahui bahwa untuk a bilangan riil dan n bilangan asli, berlaku:

Definisi bilangan berpangkat tersebut berlaku juga pada pecahan bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
Image:jawab aljabar 10.jpg

Contoh Soal :
Image:jawab aljabar 11.jpg
Image:jawab aljabar 12.jpg

4. Penyederhanaan Pecahan Bentuk Aljabar

Masih ingatkah kamu materi penyederhanaan pecahan yang telah dipelajari di Kelas VII? Coba jelaskan dengan menggunakan kata-katamu sendiri. Sekarang kamu akan mempelajari cara menyederhanakan pecahan bentuk aljabar. Untuk itu, pelajari uraian berikut ini.
a. Image:jawab aljabar 13.jpg
   Untuk menyederhanakan bentuk Image:Jawab_aljabar_13.jpg , tentukan faktor persekutuan dari pembilang dan penyebutnya.
   Kemudian, bagilah pembilang dan penyebutnya dengan faktor persekutuan tersebut.
   Faktor persekutuan dari 5x dan 10 adalah 5.
   Jadi, Image:jawab aljabar 14.jpg
b. Image:jawab aljabar 15.jpg
    Faktor persekutuan dari 9p dan 27q adalah 9.
     Jadi, Image:jawab aljabar 16.jpg
c. Image:jawab aljabar 17.jpg
   Untuk menyederhanakan bentuk  Image:jawab aljabar 17.jpg
   tentukan faktor penyebutnya sehingga Image:jawab aljabar 18.jpg
   Jadi, Image:jawab aljabar 19.jpg
Agar kamu lebih memahami materi penyederhanaan pecahan bentuk aljabar, pelajari contoh soal berikut.
Contoh soal :
Image:jawab aljabar 20.jpg
Image:jawab aljabar 21.jpg